Random Periodic Point and Fixed Point Results for Random Monotone Mappings in Ordered Polish Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Fixed Point Results in Hilbert Spaces for Rational Mappings

In this present article, we find some fixed point theorems in Hilbert Space satisfying rational type contractive condition. Our result is extension and generalization of many previous known results.

متن کامل

Coupled fixed point results for weakly related mappings in partially ordered metric spaces

In the present paper‎, ‎we show the existence of a coupled fixed point for a non-decreasing mapping in partially ordered complete metric space using a partial order induced by an appropriate function $phi$‎. ‎We also define the concept of weakly related mappings on an ordered space‎. ‎Moreover common coupled fixed points for two and three weakly related mappings are also proved in the same space‎.

متن کامل

Erratum‎: Coupled fixed point results for weakly related mappings in partially ordered metric spaces

In this note we point out and rectify some errors in a recently published paper “N. Singh, R. Jain: Coupled Fixed Point Results For Weakly Related Mappings In Partially Ordered Metric Spaces, Bull. Iranian Math. Soc. 40 (2014), no. 1, 29-40”.

متن کامل

Random coincidence point results for weakly increasing functions in partially ordered metric spaces

The aim of this paper is to establish random coincidence point results for weakly increasing random operators in the setting of ordered metric spaces by using generalized altering distance functions. Our results present random versions and extensions of some well-known results in the current literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2010

ISSN: 1687-1812

DOI: 10.1155/2010/723216